
Expansion coefficient of heat kernel of Laplacian operator in Riemann-Cartan space

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1981 J. Phys. A: Math. Gen. 14 L329

(http://iopscience.iop.org/0305-4470/14/9/003)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 30/05/2010 at 14:45

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/14/9
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 14 (1981) L329-L331. Printed in Great Britain 

LETTER TO THE EDITOR 

Expansion coefficient of heat kernel of Laplacian operator 
in Riemann-Cartan space 

T Kimura 
Research Institute for Theoretical Physics, Hiroshima University, Takehara, Hiroshima- 
ken 725, Japan 

Received 26 June 1981 

Abstract. The method of determining the coefficient in the asymptotic expansion of the heat 
kernel of the Laplacian operator in a Riemann-Cartan space is discussed. In the context of 
SO(4) gravity with totally antisymmetric torsion tensor, the method of coincidence limits of 
De Witt is equivalent to that of the algorithm of ’t Hooft. As an example, the axial current 
divergence due to the spin-4 field is given. 

Recently Goldthorpe (1980) attempted to derive the formula for the so-called b4 
coefficients in the asymptotic expansion of the trace of the heat kernel of a second-order 
Laplacian type operator A in a Riemann-Cartan space U4. He started from the 
equation which is a U4 extension of the equation of motion for an irreducible 
spin-(A + B )  field 4 (A,  B )  in the SO(4) gravity in the Riemannian space (Christensen 
andDuff 1979) 

A 4  (A,  B )  E (-g@”D,D, + SwD, + X ) 4  (A, B )  = 0,  ( 1 )  
4(A,  B )  transforming as a scalar under the action of the coordinate transformation. D, 
is defined for a vector spinor as 

D,dV = (8 ,  + B,MV - r v  ; 4 ~ ,  (2) 
where B, = B i b  Z a b  in which &b is the SO(4) generator in the ( A B )  representation. 
The X and S” are 

W u Z a b ,  
X = - Z w ” y  = -C@”Fab 

s* = -2xApsApfi, for A + B = integer, 

x = -(l/A)Z@””Y,,’+)= -(l/A)Zp”F$),,ZCab, 

S’” = -(2/A)ZAPSApp, 

x = - ( l /B)Z@”Y,>-)  = - (1 /B)Z@””F~~) , ,Zab,  

for A + B = half-integer, A > B, 

Sc” = - ( 2 /  B)XAPSApC”, for A + B = half-integer, A < B, (3) 

where 
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Goldthorpe determined the b4 coefficients with the aid of the method of coincidence 
limits of De Witt (1965). In U4, the essential feature different from the Riemannian 
case is in the definition of the autoparallel displacement matrix I(x, x’) for the field 

where the bi-scalar ~ ( x ,  x’) is one half of the square of the distance along an autoparallel 
from the point x to x‘, and the semi-colon denotes the covariant differentiation (with 
respect to r, t), The equation (7) is introduced to ensure the condition limx,+x I(x, x’) = 
unit matrix. By making the restriction that the torsion be totally antisymmetric, 
Goldthorpe obtained the b4 coefficient with 49 terms tabulated in his tables 1 and 2 .  

We note here that the coefficient b4 is directly related to the counter Lagrangian AL 
to eliminate one-loop divergence: 

AL = ( l / ~ ) g ” ( - l ) ” ~ ’ ~ ’ ~ { b 4 ( A ,  B )  + b4(B, A)} ,  

where E = 16.rr2(n - 4 ) .  Since a scalar field ( A  = B = 0) does not couple with the torsion, 
the coefficient b4 for the scalar field should not contain SFUA, In other words, in 
Goldthorpe’s table 1 ,  the sum of terms without the generators &, should coincide with 
that of the Riemannian case. It seems that this is not the case. I suppose that there are 
mistakes in the coefficients of the terms of table 1 .  Taking account of this fact and 
rewriting the terms in table 2, we have the formula 

and the curvature tensors are defined in terms of the Christoffel symbol {̂ ,,,}, the vertical 
line denotes the covariant differentiation with respect to {kU} and ~, is D, in which r^,, 
is replaced by 

It is also shown that the above formula is derived from the algorithm of ’t Hooft and 
Veltman (1974) based on Feynman graph analysis. Doubling the number of fields and 
going over to a complex basis, we set up the Lagrangian 

L = -g1/’{4*(A, B)D,gFUDu4(A,  B )  

+4*(A,  B)SC”D,4(A,  B)+4*(A ,  B ) x 4 ( A ,  B)) ,  (10) 

which leads to (1). From this form and the ’t Hooft algorithm we can immediately 
derive the formula (9)  except for the terms which are written in the form of a total 
derivative. The latter terms are introduced on consulting the result of Gilkey (1975). 

The calculation of the trace is carried out and the conformal and axial anomalies due 
to fields of arbitrary spin in U4 are obtained. As an illustration, we have the axial 
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current divergence due to a Majorana spin-; field, 

D*Ji = g1/’[b4(;, 0)-b4(0, ;)I 
= (41r ) -2g1 ’2 [ -~&,~A$aprru ( {  ))Ruphp({ 1) 
+J P V A P  

- &R ({ })DwA’ + 18A’”AvD,A. + yAE(DJ&) + D”D, (Dfi’)] ,  

2 4 s  (D,AU-DUA,)(DAA~ -DAA)+R’*”({ )IDLA. 

(1 1 )  

where 
A ,  =-’ 6 E f i u A p S Y A P -  

When the torsion is zero (A,  = 0), equation ( 1 1 )  reduces to a well known result (Kimura 
1969). It also shows that the right-hand side of (1 1 )  cannot be expressed in terms of the 
following topological invariant alone: 
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